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Abstract. We study the site and bond quantum percolation model on the two-dimensional square lattice
using series expansion in the low concentration limit. We calculate series for the averages of

P
ij r

k
ijTij(E),

where Tij(E) is the transmission coefficient between sites i and j, for k = 0, 1, . . . , 5 and for several
values of the energy E near the center of the band. In the bond case the series are of order p14 in the
concentration p (some of those have been formerly available to order p10) and in the site case of order p16.
The analysis, using the Dlog-Padé approximation and the techniques known as M1 and M2, shows clear
evidence for a delocalization transition (from exponentially localized to extended or power-law-decaying
states) at an energy-dependent threshold pq(E) in the range pc < pq(E) < 1, confirming previous results
(e.g. pq(0.05) = 0.625 ± 0.025 and 0.740 ± 0.025 for bond and site percolation) but in contrast with the
Anderson model. The divergence of the series for different k is characterized by a constant gap exponent,
which is identified as the localization length exponent ν from a general scaling assumption. We obtain
estimates of ν = 0.57± 0.10. These values violate the bound ν ≥ 2/d of Chayes et al.

PACS. 72.15.Rn Localization effects (Anderson or weak localization) – 05.70.Jk Critical point phenomena
– 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions

1 Introduction

Anderson localization [1] has been the subject of in-
tensive studies for a long time, as a model for metal-
insulator-transitions in disordered solids [2]. It is now well-
established that for dimensions d ≥ 3, there is a transition
between extended and localized states, as the strength λ
of the disorder increases. Above this transition (λ > λc)
all the electronic wave-functions are localized, namely,
their envelope decays with distance r from the center
as |ψ(r)| ∼ exp (−r/ξ(λ,E)), apart from power law pre-
factors. The localization length ξ asymptotically diverges
as ξ ∼ (λ − λc)−ν as the threshold is approached. The
one parameter scaling theory [3] for Anderson localization
implies that this transition occurs above two dimensions
(2D), while at and below 2D the wave-functions remain
localized even for the smallest amount of disorder.

For several years interest has also focused on the quan-
tum percolation (QP) problem [4–14], which is a variant
of the Anderson model. Here a quantum mechanical entity
(single electron) propagates, as governed by Schrödinger’s
equation in the tight binding representation, through a
lattice in which a certain fraction q = 1 − p of sites
or bonds have been blocked randomly. One of the main
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concerns in the QP problem is to locate the percolation
threshold pq, below which all the eigenstates of the Hamil-
tonian are localized. For three dimensions (3D), numeri-
cal studies agree with each other and with the scaling
theory on the existence of a transition (pq < 1), but the
value of the exponent ν has been the subject of much
controversial discussion [9,10,12,13]. Chang et al. [9,10]
obtained an estimate for ν from series expansion which
violates the bound ν ≥ 2/d by Chayes et al. [15]. Based
on this finding the authors argued that the QP model be-
longs to a new universality class, different from that of the
Anderson localization model. This new universality class
may not fulfill the conditions needed for the Chayes et al.
theorem to apply.

In 2D the situation is even more controversial. The
same authors [10] and earlier Meir et al. [6] found evi-
dence for a localization transition with pq < 1, based on
series expansion studies. This contradicts some numeri-
cal studies [7,11,16], but agrees with other studies, which
use different numerical techniques and also find a transi-
tion [14,17–20].

This paper extends reference [10] for d = 2, in sev-
eral directions. We now study the bond percolation case
(BQP) with series of 14 terms in the concentration p for
the quantities Ak for k = 0, 1, . . . 5. These are the average
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moments of inter-site distances, weighted by the transmis-
sion coefficients for quantum transmission between these
pairs of sites: Ak =

[∑
ij r

k
ijTij(E)

]
p

(for details refer to

the following sections). We calculate and analyze these se-
ries for several values of the energy near the center of the
band. We further add to our study the site percolation
case (SQP) for which we generate new 16 term series for
the same quantities. Unlike the various Monte Carlo sim-
ulation methods, the series method enumerates exactly all
the configurations necessary up to a given order. The only
approximation then involves the extrapolation of the se-
ries to infinite order, where one can use a large variety of
well-established methods.

Section 2 gives the definitions of the model and of
the quantities which we calculate, and explains how their
power series are generated. In Section 3 we describe the
process of series analysis. Section 4 discusses the results
and gives our conclusion.

2 Quantum percolation model and generation
of the series

The QP model is based on a tight binding Hamiltonian,

H =
∑
i

εi|i〉〈i|+
∑
〈ij〉

vij(|i〉〈j|+ |j〉〈i|), (1)

where 〈ij〉 denotes the pairs of nearest-neighbor (NN) sites
and |i〉 represents a tight binding basis wave function cen-
tered on site i. Like in the classical case, we define site and
bond QP. In the SQP problem the on-site energies εi are
uncorrelated random variables, which assume the values 0
or ∞ with respective probabilities p and 1− p. Hence the
propagating electron is completely forbidden to be on sites
i with εi =∞, which we identify as vacant. All bonds are
occupied (vij = 1), allowing electron propagation between
NN sites.

In the BQP problem we assume constant on-site en-
ergies εi, which we take to be zero. Now the NN hopping
matrix elements vij are uncorrelated random variables,
which assume the values 1 or 0 with respective probabil-
ities p and 1 − p. We refer to bonds for which vij = 0 as
vacant and to those with vij = 1 as occupied. The SQP
and BQP models are thus identified as tight binding mod-
els on site and bond percolation clusters.

To probe the localization transition, we start by con-
sidering an arbitrary pair of sites on the lattice, i and
j (including the possibility i = j). We next attach semi-
infinite one-dimensional chains (in which all nearest neigh-
bor vij ’s are unity) to points i and j, insert an incoming
wave eiqn with energy E = 2 cos q on the chain enter-
ing site i, and calculate the amplitude tij of the outgoing
wave on the chain leaving from site j, by solving the QP
model. Defining the corresponding transmission coefficient
as Tij(E) = |tij |2, we next calculate the average transmis-
sion coefficient,

T (p,E) =

∑
i,j

Tij(E)


p

, (2)

where the sum is over all pairs of lattice points, and [. . . ]p
represents a configurational average over the vij ’s in the
bond case or over the εi’s in the site case. In the following
we give the explanations for the bond problem only, but
the generalization for site percolation should be obvious.

A generalization of T (p,E) involves the moments of
distances between pairs of lattice sites,

Ak(p,E) =

∑
i,j

rkijTij(E)


p

, (3)

where rij denotes the geometrical distance between sites
i and j. Clearly, T (p,E) = A0(p,E). We study these mo-
ments up to order k = 5, to obtain estimates for the local-
ization length exponent ν. This is based on the following
scaling assumption: For small p, we expect that in some
average sense [Tij(E)]p ∼ r−cij f(rij/ξ), where c > 0 and
f(x) is a scaling function which approaches a constant as
x→ 0 and decays exponentially for x→∞. Therefore

Ak(p,E) ∼
∫
rkij [Tij ]p ddrij ∼

∫
rk−cf(r/ξ)ddr

∼ ξ(p,E)d−c+k
∫
xk−cf(x)ddx

∼ (pq − p)−ν(d−c+k) ∼ (pq − p)−γ−kν , (4)

with γ = ν(d− c).
Given the concentration p of conducting bonds, each

realization of the system consists of clusters (Γ ) of sites
interconnected by conducting bonds. For small p, the aver-
age [. . . ]p may be expressed as a sum over the clusters [21],

Ak(p,E) =
∑
Γ

pnb(Γ )(1− p)np(Γ )
∑
i,j∈Γ

rkijTij(E), (5)

where nb(Γ ) and np(Γ ) are the numbers of bonds in Γ
and on its perimeter. If Tij is replaced by 1 for all i and
j in Γ , then (2) reduces to the mean cluster size S and
(3) reduces to the kth moment of the correlation length of
classical percolation, both diverging at the classical per-
colation threshold pc [22].

Since the sum in (5) contains polynomials in p, the
averages in (2) and (3) yield series in p. A calculation to
order pn involves all clusters with up to n bonds. The
series for T require only the topology of the clusters. In
contrast,Ak depends on the explicit geometry of each clus-
ter, which requires much more data. Separate computer-
programs [23] were used to enumerate all different cluster
configurations recursively, by an algorithm similar to those
described in [24–26]. These programs store the necessary
information in shape data-files which include clusters with
up to 14 bonds or up to 16 sites, respectively. The data
have been used previously in [27], where some discussion
on checks of their correctness is given.

With the list of graphs available, what remains to be
done in order to obtain the series for T or Ak according to
(5) and (3), is to calculate the Tij ’s for all the graphs. For
bond percolation [5,10] give some details on how this cal-
culation is done. Here we will complement this information
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Fig. 1. Example cluster: square plaquette.

by showing how to set up the tight binding Hamiltonian
in the site percolation case for the example cluster shown
in Figure 1. For a particular transmission coefficient we
simplify the Schrödinger equation for the cluster with at-
tached chains, and end up with a set of linear equations
that can be solved to yield Tij by standard techniques.

We now demonstrate this calculation by deriving T−1,1

for Figure 2. With the site-labeling as given in the figure,
we write down the relevant part of the Schrödinger equa-
tion HΨ = EΨ in the site basis:

see equation (6) above.

We simplify this infinite matrix problem to a finite one,
using the Ansatz

ψ−(n+1) = e−inq + reinq

ψ(n+1) = teinq,

(i =
√
−1) for n = 0, 1, . . . This Ansatz is of course iden-

tified as an incoming wave from the left, which is partly
transmitted to the right, but also partly reflected back.
The amplitudes on the outgoing chain are written down
explicitly in Figure 2. On inserting the above Ansatz into
(6) one verifies that it satisfies the equations on the chains
with the well-known relation between q and E,

e−iq + e+iq = E ⇐⇒ q = arccos(E/2),

which imposes on E the 1D energy band limits −2≤E≤2.

v v v v v v v v
· · · −4 −3 −2 −1 +1 +2 +3 +4 · · ·

tei0q tei1q tei2q tei3q · · ·

v va b

Fig. 2. Infinite chains connected to 2 different sites of the
cluster.

We are now left with a finite system of linear equations,
corresponding to the inner box in (6),−E + eiq 1 0 1

1 −E 1 0
0 1 −E 1
1 0 1 −E + eiq


1 + r

ψa
ψb
t



=

 eiq − e−iq

0
0
0

 . (7)

It involves only sites on the cluster, can be solved for t ≡
t−1,+1, and the desired transmission coefficient T−1,+1 =
t∗t is obtained. In the computerized calculation one would
now refer to the data-files to obtain the number of cluster
sites ns, the site perimeter np, and the geometrical site
distances rij , and combine those to get the cluster’s con-
tribution to the series, according to (5). For our example,
ns = 4, np = 8, and rij = 0,

√
2, or 1.

Tables 1 and 2 list the coefficients in the power se-
ries for E = 0.05, the energy value we studied most
extensively.

3 Analysis of the series

As explained below, our analysis used the Dlog-Padé
method [28] and the methods M1 and M2 [29,30]. All of
these were combined with Euler-transformations for im-
proved results. For each series, our main goal was to obtain
the critical threshold pq and the critical exponent which
describe the expected power law divergence as in (4). Hav-
ing followed this for several energies, we present detailed
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Table 1. Series for bond quantum percolation at E = 0.05.

Coefficients an in · · · =
P
n anp

n

n T (p) A1(p) A2(p)

0 1.000000000000000 0.000000000000000 0.000000000000000

1 0.03957945284315 4.000000000000000 4.000000000000000

2 6.0074156477499 −4.448814783956 8.2374767170589

3 −14.6523834314562 50.8004930461771 40.6487625304979

4 90.379666362283 −187.719303537795 9.042112348758

5 −397.05721237573 1068.2863925791 417.81036532941

6 1985.4017604669 −5207.4605890481 −1057.8566333405

7 −9616.769785599 27070.96616584 7204.497199292

8 47458.19229530 −138440.41197483 −32238.163905991

9 −233579.5799124 715329.7867960 170992.9117054

10 1150445.233208 −3697482.86660 −869805.429016

11 −5646077.00459 19173708.14468 4608254.9866

12 27565972.46187 −99641486.7740 −24814011.855

13 −133538213.9423 519169541.7114 137475024.677

14 639926553.90 −2712719744.041 −782576209.09

Coefficients an in · · · =
P
n anp

n

n A3(p) A4(p) A5(p)

0 0.000000000000000 0.000000000000000 0.000000000000000

1 4.000000000000000 4.000000000000000 4.000000000000000

2 30.86489371502841 72.2374767170589 149.4923107129979

3 81.748745414783 301.714932494421 1079.43245514488

4 320.99465308520 1163.50160575778 4552.3161589277

5 363.1577941159 2763.0007578961 15747.841405944

6 3002.304839285 10246.191812356 46602.12045721

7 −4477.05338451 9852.511059961 127518.9407191

8 45676.7818067 92341.48575417 300318.983304

9 −182685.994932 −130494.9602474 830627.10615

10 983094.74967 1210064.19908 848221.143

11 −4418711.64120 −3365966.8395 11646458.19

12 19156449.7128 7781630.62 −73117818.05

13 −66359167.688 70124104.1 794289573.1

14 97892791.6 −1197379145.3 −7155423404.7

results for all the series A0 to A5, both in bond and site
percolation, at E = 0.05, and in the BQP case also for
E = 0.07.

In addition to fitting our series to power law diver-
gences, as in (4), we also followed Soukoulis and Grest [7]
and attempted fitting the localization length to the form

ξ(p) = A exp
(
B

(
p

1− p

)y)
, (8)

which would imply a threshold pq = 1, namely no transi-
tion. As we discuss below, this latter form does not fit our
series.

3.1 Dlog-Padé analysis

The Dlog-Padé method is one of the most common meth-
ods for the asymptotic analysis of series. One calculates
Padé approximants to the logarithmic derivative of the se-
ries and obtains estimates for the critical threshold (pq)
and exponent (γ + kν) from their real first order poles
and the corresponding residues. In the following we will
refer to each such pole-residue-pair as a data-point; these
points are often plotted in a diagram of residues versus
poles.

The coefficients an of our series start to alternate in
sign above a certain n, suggesting that the Ak’s have a
singularity on the negative axis. This was confirmed by
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Table 2. Series for site quantum percolation at E = 0.05.

Coefficients an in · · · =
P
n anp

n

n T (p) A1(p) A2(p)

0 0.000000000000000 0.000000000000000 0.000000000000000

1 1.000000000000000 0.000000000000000 0.000000000000000

2 0.03957945284315 4.000000000000000 4.000000000000000

3 6.0074156477499 −4.44881478395635 8.2374767170589

4 −15.0283251433228 43.7146422699542 40.499242290840

5 68.25139563829 −135.665100908902 6.64882296999

6 −250.010808280226 620.9710988777 298.67018968013

7 1010.25028610076 −2432.377356234 −603.389626813

8 −3989.9567096966 10103.902081227 3431.316029343

9 15921.637061458 −41007.625589472 −12107.995039736

10 −63170.64881925 167709.66323635 51624.65390381

11 250361.97242683 −683832.2855886 −206522.3184462

12 −988074.3391790 2792714.8675073 864511.977329

13 3877641.328297 −11414962.4492 −3664978.349064

14 −15099633.0805 46756660.7835 16050060.7665

15 58219742.9450 −192049761.5717 −72455863.605

16 −221615389.799 791818339.302 337957457.51

Coefficients an in · · · =
P
n anp

n

n A3(p) A4(p) A5(p)

0 0.000000000000000 0.000000000000000 0.000000000000000

1 0.000000000000000 0.000000000000000 0.000000000000000

2 4.000000000000000 4.000000000000000 4.000000000000000

3 30.86489371502841 72.23747671705889 149.49231071299793

4 91.4086778930381 325.2475260458056 1122.58395413209

5 293.35018871584 1229.04360113283 5064.2307347288

6 440.4534408151 2935.61054030906 17128.783407173

7 1698.0041410811 8405.952345506 47775.69791875

8 −29.878237684 12601.91377327 120339.37647009

9 12804.79044742 45788.0529727 261175.6691200

10 −29129.1612421 8663.608786 600274.009761

11 147955.223726 287870.520363 856298.66374

12 −454712.47646 −214507.6219 4345569.4898

13 1314081.6792 −400178.1236 −14365480.90

14 −792537.7645 20592040.366 152270963.96

15 −24640151.570 −194727776.05 −1082292395.

16 272899691.18 1528906185.8 7882563835.
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our Dlog-Padé analysis. Application of Euler-
transformations, into the new variables z = pn p/(pn−p),
with pn near −0.2, usually improved the behavior of the
transformed series.

For SQP we obtain satisfactory results in this manner.
Data points in the pole residue plot are high in number
(above 50) and well concentrated along a distinct line for
each series. Figure 3 shows the pq and exponent estimates
as function of a parameter which represents the order of
the corresponding Padé approximant. As seen from this
figure, the estimates appear to converge for most series.
Therefore, we decided to calculate results for the criti-
cal parameters as averages over the points of higher or-
der, with error margins set by the standard deviation σN .
Points included in the average are surrounded by a box
in Figure 3, and their number is in the range of 42± 10.
In Figure 4 we plot the resulting pq’s and exponents as
a function of k. The slope of the linear fit in Figure 4b
suggests ν = 0.70, the error bars on the individual points
allow some variation not exceeding 0.5 < ν < 0.75. The
overall threshold estimate from this Dlog-Padé analysis is
pq = 0.74± 0.03.

In the bond case however, the Dlog-Padé method, even
in combination with an Euler-transformation, showed to
be insufficient for a quantitative analysis. As k in Ak
increases, the suggested pq, determined as some aver-
age over data points, appears to grow (roughly pq =
0.64, 0.65, 0.68, 0.68, 0.69, 0.71, 0.72 for k = 0 . . . 6 and
E = 0.05). Acceptance of such an erroneous pq would
also predict a much larger exponent ν ≈ 1 (leading ex-
ponents for Ak of roughly 1.3, 2.1, 3.2, 3.8, 5.0, 6.4, 7.6 for
k = 0 . . . 6). A biased reading at the presumably correct
pq (determined later) does not seem satisfactory either,
since for some series only a negligible number of points
are located in that area. Accordingly in the bond percola-
tion case we use the Dlog-Padé method only to get rough
estimates for the critical parameters as a starting point
for M1 and M2, and to assess the general behavior of the
series from the number of pole-residue pairs which are
obtained.

3.2 Estimation of pq and critical exponents using M1
and M2

The analysis algorithms M1 and M2 allows the accurate
simultaneous determination of the threshold pq, leading
critical exponent (denoted by h in general), and confluent
correction to scaling exponent ∆1, assuming the asymp-
totic form

A(pq − p)−h(1 +B(pq − p)∆1).

In both methods one finds the point of best convergence
in the (pq, h,∆1) space, by examination of 2D plots at
different trial values for pq [30]. The effectiveness and pre-
ciseness of these series analysis methods has been demon-
strated in several papers [21,29,31,32].

For the accurate determination of the critical proper-
ties we concentrated on the energy values E = 0.05, which

has also been used in previous publications [6,9,10], and
E = 0.07 (bond case). In cases where we looked at other
energies, the results were similar.

First we determine for each series separately the triple
(pq, h,∆1) of best convergence. Using M1 this was always
possible, with the exception of A1 in the bond percolation
case. The trial-pq is varied until best convergence and sym-
metry of the curves from all high order Padé approximants
is obtained. This pq and the corresponding h are taken as
the temporary best estimates for that series, with tem-
porary error estimates from the nearest trial-pq’s, whose
plots show poorer convergence. In many cases M1 proves
to be quite sensitive to small changes in the trial-pq, and
the degree of convergence usually looks very convincing.
Away from the best pq, convergence degrades quickly, the
picture becomes unsymmetric and at the same time the
area of convergence shifts to lower or higher values of h.
We show examples of such plots in Figures 5 and 6.

In comparison, the M2-plots are in many cases much
less decisive. The well-converged crossing of Padé approx-
imant curves, expected for the best choice of pq, sustains
over a much wider range, where again the change in pq

is accompanied by a shift in the corresponding h. In such
cases we only made sure that the estimate from M1 is
in agreement with the M2-plots, but did not attempt to
decide separately on best estimates from M2. We show
examples of M2-plots in Figures 7 and 8.

Next we construct an overall estimate for pq (with sym-
metric error bars), as to be consistent with the estimates
from all individual series. We then look again at plots from
M1 and M2 at the trial-pq’s set by the overall pq bounds.
In some cases this requires an increase in the error esti-
mates for the leading exponent.

The leading exponent values forAk are plotted as func-
tion of k in Figures 9 and 10 for the bond and site cases,
respectively. No estimate for A1 in bond percolation could
be obtained, due to lack of convergence. According to our
scaling assumption (Sect. 2) all points should lie on a sin-
gle straight line, with slope ν. Apart from A2 in the bond
case, the data comply very well with this prediction. Final
ν-estimates are obtained from the range of slopes which
produce lines passing through all points within their error
bounds. (A2 in the bond case was excluded.)

The numerical results are summarized in Table 3. In
this table we also include (in parentheses) estimates for
γ and ∆1. The critical exponent γ for the average trans-
mission coefficient T is related to the decay rate of Tij as
r−cij , see (4). Thus, our rough estimate γ ≈ 1 implies that
c = d−γ/ν ≈ 0, i.e. Tij decays very slowly at pq. Our esti-
mates for the correction exponent ∆1 are even rougher, as
we did not perform a dedicated study aimed to determine
them accurately. The Table just lists the range of values
deduced from the M1 and M2 analyses. We comment that
the Euler transformations are known to produce analytic
correction terms even if not present originally. When the
leading correction exponent is larger than 1, as seems to
be the case here, these “artificial” corrections will show
up in M1 and M2 [33], and hence our ∆1 estimates do
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Fig. 3. Dlog-Padé analysis of the series A1, A2, and A3 for SQP. An Euler transformation with pn = −0.24 was applied. The
numbers on the x-axes represent the order of the Padé approximant, and are close to the length of the series used.
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Table 3. Summary of the critical parameters.

model E pq ν γ ∆1

BQP 0.05 0.625 ± 0.025 0.51± 0.05 (≈ 1) (≈ 1 . . . 1.7)
BQP 0.07 0.590 ± 0.020 0.49± 0.04 (≈ 1.1) (≈ 1.1 . . . 1.6)
SQP 0.05 0.740 ± 0.025 0.61± 0.06 (≈ 1) (≈ 1 . . . 2)
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Fig. 4. Results for the critical parameters in SQP from Dlog-
Padé analysis.

not have much significance. The stated ranges include the
estimates from all individual series.

3.3 Sensitivity to the Euler transformation

Our analysis relies in a large part on the use of Euler trans-
formations to increase the number of useful Padé approx-
imants and to improve their convergence. The technique
is well-established and has been used with success [34],
but nevertheless we found it worthwhile to check, to what
degree our results are sensitive to the precise choice of
pn, the value of p which is mapped to infinity by the Eu-
ler transformation. We first chose a pn very close to the

0 0.5 1 1.5 2 2.5 3
3.3

3.4

3.5

3.6

3.7

3.8

3.9

(a) trial p
q
=0.60

Correction Exponent (∆
1
)

Le
ad

in
g 

E
xp

on
en

t (
h)

[4/6]
[4/7]
[5/5]
[5/6]
[6/4]
[6/5]
[7/4]

1.5 1.6 1.7 1.8
3.4

3.42

3.44

3.46

3.48

0 0.5 1 1.5 2 2.5 3
3.3

3.4

3.5

3.6

3.7

3.8

3.9

(b) trial p
q
=0.61

Correction Exponent (∆
1
)

Le
ad

in
g 

E
xp

on
en

t (
h)

1.5 1.6 1.7 1.8
3.52

3.54

3.56

3.58

3.6

0 0.5 1 1.5 2 2.5 3
3.3

3.4

3.5

3.6

3.7

3.8

3.9

(c) trial p
q
=0.62

Correction Exponent (∆
1
)

Le
ad

in
g 

E
xp

on
en

t (
h)

1.5 1.6 1.7 1.8
3.62

3.64

3.66

3.68

3.7

Fig. 5. M1 analysis of the series A5(p)/p for BQP (E = 0.05).
Plots for different trial values of pq. The best values for h and
pq are found from the crossing of all the Padé approximants.
The central one (b) shows best convergence and symmetry of
the curves resulting from the different Padé approximants. In-
dices are given in the legend. An Euler transformation with
pn = −0.2 was applied. The insets show enlarged views of
the convergence region. The deduced values pq = 0.61 ± 0.01,
h = γ + 5ν = 3.55± 0.10 and ∆1 = 1.6± 0.1 further take into
account the analysis with M2 and different pn.

negative singularity, as indicated by the Dlog-Padé anal-
ysis of the original series. We then varied this pn over a
considerable range of typically 10 to 20%, and compared
the results. We observed that a variation of pn does move
the data points or curves obtained from individual Padé
approximants, but that the average (in Dlog-Padé plots)
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Table 4. Overview over the energy dependence for the Dlog-Padé analysis in BQP.

Energy Rating Comments on behavior of the series
0.01 0
0.02 2 A4 about 30 data points, A1, A2 unusual high p values (0.8–0.9), T,A3, A5 bad.
0.03 3 Only A1, A2 with 50 data points, others worse as for E = 0.02.
0.04 4 50 to 60 data points for T to A4 in a wider range (0.3 in p), A5 bad.
0.05 5 40 to 70 data points for T to A4, A5 only 20, pq shifts up with increasing order k in

Dlog-Padé analysis.
0.06 5 40 to 70 data points for T to A4, A5 only 20, pq shifts up with increasing order k in

Dlog-Padé analysis.
0.07 5 40 to 60 data points for T,A1, A3, A4, A2 less, A5 only 20, pq shifts up with increasing

order k in Dlog-Padé analysis.
0.08 4 30 to 40 data points for each series, except for A5 being worse.
0.09 3 20 to 40 data points for each series.
0.1 1 Only about 20 data points within a reasonable region.
0.5 0
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Fig. 6. M1 analysis of the series T (p) for BQP. (E = 0.05).
Plots for different trial values of pq. The central one (b) shows
best convergence and symmetry of the curves resulting from
the different Padé approximants. Indices are gives in the leg-
end. An Euler transformation with pn = −0.2 was applied.
The insets show enlarged views of the convergence region. The
deduced values pq = 0.61 ± 0.01, h = γ = 1.00 ± 0.15 and
∆1 = 1.25 ± 0.20 further take into account the analysis with
M2 and different pn.

and the convergence region (in M1 plots) stay fixed to
very good accuracy, when compared to the error bounds
given by the analysis technique itself. We illustrate this in
Figures 11a–11c. We are therefore convinced that we can
exclude the possibility that our results are artifacts of the
applied Euler transformations.

3.4 Study of energy dependence

The energy band for the periodic square lattice (all vij = 1
and εi = 0 in the Hamiltonian (1)) is [−4, 4]. It is ex-
pected [35], and confirmed by numerics [36], that these
limits also apply (at least approximately) to possible ex-
tended states in the presence of disorder. The semi-infinite
chains, which we use to define the transmission coeffi-
cients, impose the band limits [−2, 2] of the 1D-case on
the range of Bloch waves which can be injected into the
system. This limitation can be overcome by choosing a dif-
ferent value vij 6= 1 for the hopping amplitudes on those
chains. However, we have not done this, since we are only
interested in states near the band center, which are ex-
pected to be the first to de-localize with increasing p.

We generated series for different energies, aiming to
check to what degree our results depend on this param-
eter and possibly gain insight into the E-dependence of
the quantum threshold pq. In this part of the study we
concentrate on the bond case.

The results from the Dlog-Padé analysis reveal that
the series behave well only in a very narrow energy re-
gion. From the number of pole-residue pairs and from the
quality of their convergence we subjectively rated the se-
ries for the different energies with grades from 0 (worst)
to 5 (best behavior), and summarize in Table 4. This rat-
ing does not always apply to all the moments, but rather
gives an average. When the quality of convergence varies
for the moments (T,A1, ..., A5), A5 usually performs rela-
tively bad.

The energy region of good convergence E = 0.04 to
0.08 is small compared to the width of the energy band. As
a general feature, we observe without exception, that the
line of pole-residue points shifts to smaller pq and/or expo-
nents for increasing energy. From the Dlog-Padé analysis
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Fig. 7. M2 Analysis of the same series as used for Figure 5.
An Euler Transformation with pn = −0.2 was applied. We see
no drastic changes in the convergence but a general agreement
with M1.

alone we cannot give much importance to this tendency.
As mentioned above, such plots also seem to shift to larger
pq for increasing order k of the moments. The latter shifts
were resolved when applying M1 and M2. The results from
a study with M1 and M2 show no systematic changes in
the leading exponent, and the related shifts in pq over the
narrow energy range are too small to draw detailed con-
clusions. The pq estimates for E = 0.05 and E = 0.07
are centered at 0.625 and 0.590, but still overlap within
their error bars (Tab. 3). We conclude that at present not
much insight can be gained from the series, concerning the
p-dependence of the mobility edge.

3.5 Checks for an essential singularity

Based on the transfer-matrix technique and finite-size
scaling, Soukoulis and Grest [7] fitted their data to a di-
vergence of the localization length as in (8), with y very
close to 0.5. Such a divergence should carry over to the
moments Ak, for k > 0.
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Fig. 8. M2 analysis of the series T (p) for BQP (E = 0.05).
Plots for different trial values of pq. The upper one (a) shows
best convergence of the curves resulting from the different Padé
approximants. Indices are gives in the legend. An Euler trans-
formation with pn = −0.2 was applied.

To check whether our series could in fact describe such
an essential singularity, instead of the proposed power law
(pq−p)−h, we first calculate the series for the logarithmic
derivative of the original quantity, and then apply all of
our regular analysis techniques to these series. According
to the above functional forms, these derived series should
give us a regular power law singularity with the exponent
y+ 1 ≈ 1.5 at p = 1 in the first case, or the exponent 1 at
p = pq in the second case.

The analysis of the so-transformed series proved dif-
ficult, because the additional logarithmic derivative pro-
duced new singularities near the origin, and these badly
influenced the behavior. In most cases this could be alle-
viated by proper Euler transformations, typically applied
after taking the first logarithmic derivative.

In no case did the series support the form of divergence
(8). Very few data points (or none) were found in the
relevant region of the Dlog-Padé plots, and no convergence
was obtained in M1 and M2.

Within the limitations set by the poorer behavior, we
obtained, for most series, plots which did support the
power law divergence of ξ, namely were in agreement with
poles near the proposed pq together with a residue close to
1. As a typical example we show such plots for A2 in the
bond percolation case (Figs. 12–15). For comparison we
also show an M1-plot at a trial-pq of 1. While the results
from this sub-section may not be convincing alone, they
do support the evidence for the power law divergences of
the Ak’s.
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Fig. 9. Plots of the leading exponent for the moments Ak(p)
versus k for the bond percolation case, (a) E = 0.05, (b)
E = 0.07. They are expected to fall on a straight line, with
slope ν (localization length exponent). Error bounds for ν are
determined from the range of possible slopes. No estimates
were obtained for A1.

4 Summary of results and discussion

In the preceding sections we presented results from our
recent numerical study of two-dimensional site and bond
quantum percolation. Table 3 summarizes the quantitative
results. While the study in part gives very convincing ev-
idence for a de-localization transition, it also leaves room
for some doubts. On the positive side, we list that

• We find a common quantum percolation threshold pq

for all series within one model, within reasonable error
margins.
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Fig. 10. Plot analogous to Figure 9 but for the site percolation
case.

• We find that pq is larger for the site case than for the
bond case, as would be expected from the thresholds
for classical geometrical percolation.
• We find a constant gap exponent for the moments Ak,

consistent with the scaling assumption, and the points
in Figures 9 and 10 fall well on a straight line.
• The results from the previously existing 10-term series

for bond percolation have been confirmed by the newer
14-term series.

On the down-side, we note that

• The bond percolation series do not behave well enough
to give consistent results with a regular Dlog-Padé
analysis, which could imply that the correction to
the leading exponent plays a sufficient role to destroy
proper convergence (if not accounted for). M1 and M2
do not suffer from the problem observed with Dlog-
Padé analysis.
• We find only marginal agreement on a common ν from

bond and site percolation. However, the stated error
estimates are not rigorous bounds, and the result from
the longer and better behaved site-percolation series
are probably more trustworthy.
• the attempted study of the energy dependence revealed

only a narrow region in which the series behave suffi-
ciently well.

In addition there are the usual limitations of all series
expansion studies. The analysis necessarily includes as-
sumptions about the critical behavior, which, in the case
under study, may need further justification. The possibil-
ity remains that the series may still be too short to reveal
the correct parameters, even if the correct assumptions
are made. Given these limitations one should be cautious
to draw conclusions on the critical behavior from series
alone.
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Fig. 11. Plots from an M1 analysis of the series A4(p)/p for
BQP (E = 0.05) showing the influence of varying pn in the
Euler transformation. As can be seen from parts (a), (b), and
(c), different pn-values change the lines for individual Padé
approximants, but keep the convergence point fixed.

There are however several other publications by inde-
pendent research groups which give support to the ob-
served behavior [11,14,17–20,37–39]:
• Mookerjee et al. [11,40] have listed most of the above

references, including the methods which were used and
the conclusions. Authors using real space renormal-
ization (RSR), recursion methods (RM), or Thouless-
Edwards-Licciardello boundary perturbation methods
(TEL) found transitions with pq-values ranging from
0.7 to 1 for either the site or the bond case.
• In addition, Srivastava and Chaturvedi [39] reported
pq = 0.73 for SQP, based on equation of motion
(EOM) methods.
• We also observe satisfactory numerical agreement on
pq estimates with other studies, by Koslowski et al. [20]
and Raghavan [19] (his lower limit). Earlier estimates
by Odagaki and Chang [17] are based on real space
renormalization group calculations with very small
cells, and hence may not be numerically reliable.
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Fig. 12. Dlog-Padé analysis of the logarithmic derivative of
A2(p)/p of bond percolation, to check for an essential singu-
larity. Although there are only a few data-points, they support
the proposed power-law divergence as opposed to the exponen-
tial divergence (see text). The printed averages result from the
points in the boxed region (the standard deviations are given
as errors).

Thus, our results agree with the overwhelming major-
ity of numerical studies of 2D QP on the existence of a
transition from exponentially localized states to at most
power law decaying states. The only real (pertaining) nu-
merical disagreement comes from studies by Taylor and
MacKinnon [16] and Soukoulis and Grest [7], based on the
transfer matrix method applied to quasi one-dimensional
strips of finite width combined with finite size scaling. The
latter authors remark that the transfer matrix technique
and finite size scaling (FSS) is proven to be the most re-
liable technique, but judging from comments by other au-
thors [40] it also has its problems. Due to the underlying
narrow strips, the possibility of an inbuilt one-dimensional
geometry which influences the results cannot be ruled out.

Independent estimates for the supposedly universal lo-
calization exponent ν (if one assumes a power law diver-
gence of the localization length) are rare. Apart from se-
ries expansion we know only of the paper by Odagaki and
Chang [17], who obtained ν = 3.35 for the site case and
ν = 1.89 for the bond case, using RSR with the minimal
cell size of 2× 2. Our estimate for the localization length
exponent ν is in the range 0.46 . . .0.69. As already men-
tioned, these values violate the Chayes bound. (As men-
tioned before, this bound may not be applicable to QP.)
Our result supports the possibility that quantum perco-
lation may be in a different universality class than the
Anderson model, for which there exists evidence that all
states in 2D are localized.

Finally, we note that the existence of power law or
weakly localized states is not particular to QP. Such
states have also been observed for the 2D Anderson model
by many authors, two of which we cite as examples.
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Fig. 13. M1 study of the logarithmic derivative of A2(p)/p
of bond percolation, to check for an essential singularity. Both
parts show reasonable convergence near a leading exponent of
1 with a trial threshold near the proposed pn. The slightly
higher values for pn may be due to the shortened series.

Kaveh [41] studied the model theoretically and gave exper-
imental evidence for his predictions of non-metallic trans-
port by quasi-extended wave-functions, which change into
purely power-law decaying states for large length scales.
He concludes that all the available data support the exis-
tence of power-law localized states which are separated by
a mobility edge from exponentially localized states. Godin
and Haydock [42,43] calculated the electronic transmit-
tance as a function of energy using the block recursion
method. They observed a sharp edge between weakly and
strongly localized states near but well inside the band
edge.

0.8 1 1.2 1.4 1.6 1.8 2
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

2D BQP, E=0.05, Dlog A
2
/p, M2, trial p

q
=0.720 (p

n
=−0.190 remapped)

Correction Exponent (∆
1
)

Le
ad

in
g 

E
xp

on
en

t (
h)

[4/5]
[4/6]
[4/7]
[5/4]
[5/5]
[5/6]
[6/4]
[6/5]
[7/4]

Fig. 14. M2-plot which is in agreement with the M1 study
from Figure 13.
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Fig. 15. M1 plot for the logarithmic derivative of A2(p)/p of
bond percolation at a trial-pq of 1. The absence of a conver-
gence region does not support the possibility of the essential
singularity.
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